A Scalable Kernel Approach to Learning in Semantic Graphs with Applications to Linked Data
نویسندگان
چکیده
In this paper we discuss a kernel approach to learning in semantic graphs. To scale up the performance to large data sets, we employ the Nyström approximation. We derive a kernel derived from semantic relations in a local neighborhood of a node. One can apply our approach to problems in multi-relational domains with several thousand graph nodes and more than a million potential links. We apply the approach to DBpedia data extracted from the RDF-graph of the Semantic Web’s Linked Open Data (LOD).
منابع مشابه
A scalable approach for statistical learning in semantic graphs
Increasingly, data is published in the form of semantic graphs. The most notable example is the Linked Open Data (LOD) initiative where an increasing number of data sources are published in the Semantic Web’s Resource Description Framework and where the various data sources are linked to reference one another. In this paper we apply machine learning to semantic graph data and argue that scalabi...
متن کاملGenerating an Indoor space routing graph using semantic-geometric method
The development of indoor Location-Based Services faces various challenges that one of which is the method of generating indoor routing graph. Due to the weaknesses of purely geometric methods for generating indoor routing graphs, a semantic-geometric method is proposed to cover the existing gaps in combining the semantic and geometric methods in this study. The proposed method uses the CityGML...
متن کاملA Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملDeveloping a BIM-based Spatial Ontology for Semantic Querying of 3D Property Information
With the growing dominance of complex and multi-level urban structures, current cadastral systems, which are often developed based on 2D representations, are not capable of providing unambiguous spatial information about urban properties. Therefore, the concept of 3D cadastre is proposed to support 3D digital representation of land and properties and facilitate the communication of legal owners...
متن کاملیادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیکهای یادگیری معیار فاصله
Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010